Vega declarative grammar is a powerful way to visualize your data. Since Kibana 6.2, you can build rich Vega and Vega-Lite visualizations with your Elasticsearch data.
A radar chart is a graphical method of displaying multivariate data in the form of a two-dimensional chart of three or more quantitative variables represented on axes starting from the same point.
In this blog post, i will show how to use vega with Kibana to build a radar chart using dynamics data from any elasticsearch index. I will use the exmaple provided in vega website and show how to convert it to Kibana visualization
Let's create a small index with some data
PUT radar
{
"settings": {
"number_of_shards": 1,
"number_of_replicas": 0
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
},
"key": {
"type": "keyword"
},
"category": {
"type": "keyword"
},
"value": {
"type": "integer"
}
}
}
}
Use the following _bulk command to add a set of data into our index
POST _bulk
{"index":{"_index":"radar"}}
{"key":"key-0","value":19,"category":0}
{"index":{"_index":"radar"}}
{"key":"key-1","value":22,"category":0}
{"index":{"_index":"radar"}}
{"key":"key-2","value":14,"category":0}
{"index":{"_index":"radar"}}
{"key":"key-3","value":38,"category":0}
{"index":{"_index":"radar"}}
{"key":"key-4","value":23,"category":0}
{"index":{"_index":"radar"}}
{"key":"key-5","value":5,"category":0}
{"index":{"_index":"radar"}}
{"key":"key-6","value":27,"category":0}
{"index":{"_index":"radar"}}
{"key":"key-7","value":21,"category":0}
{"index":{"_index":"radar"}}
{"key":"key-0","value":13,"category":1}
{"index":{"_index":"radar"}}
{"key":"key-1","value":12,"category":1}
{"index":{"_index":"radar"}}
{"key":"key-2","value":42,"category":1}
{"index":{"_index":"radar"}}
{"key":"key-3","value":13,"category":1}
{"index":{"_index":"radar"}}
{"key":"key-4","value":6,"category":1}
{"index":{"_index":"radar"}}
{"key":"key-5","value":15,"category":1}
{"index":{"_index":"radar"}}
{"key":"key-6","value":8,"category":1}
{"index":{"_index":"radar"}}
{"key":"key-7","value":8,"category":1}
I will use the following update_script just to get data looks timeseries :) this will help us later to demo how to access the context of Kibana TopNavBar (Mainy query, filter and time date range) to be applied.
POST radar/_update_by_query
{
"script": {
"source" : """
DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS'Z'");
df.setTimeZone(TimeZone.getTimeZone("UTC+1"));
Date date = new Date();
ctx._source['@timestamp'] = df.format(date);
""",
"lang": "painless"
},
"query": {
"match_all": {}
}
}
The following is a complete reproduction of vega example with Elasticsearch data
{
"$schema": "https://vega.github.io/schema/vega/v5.json",
"description": "A radar chart example, showing multiple dimensions in a radial layout.",
"width": 400,
"height": 400,
"padding": 40,
"autosize": {"type": "none", "contains": "padding"},
"signals": [{"name": "radius", "update": "width / 2"}],
"data": [
{
"name": "table",
"url": {
"index": "radar",
"body": {"size": 1000, "query": {"match_all": {}}}
},
"format": {"property": "hits.hits"}
},
{
"name": "keys",
"source": "table",
"transform": [{"type": "aggregate", "groupby": ["_source.key"]}]
}
],
"scales": [
{
"name": "angular",
"type": "point",
"range": {"signal": "[-PI, PI]"},
"padding": 0.5,
"domain": {"data": "table", "field": "_source.key"}
},
{
"name": "radial",
"type": "linear",
"range": {"signal": "[0, radius]"},
"zero": true,
"nice": false,
"domain": {"data": "table", "field": "_source.value"},
"domainMin": 0
},
{
"name": "color",
"type": "ordinal",
"domain": {"data": "table", "field": "_source.category"},
"range": {"scheme": "category10"}
}
],
"encode": {"enter": {"x": {"signal": "radius"}, "y": {"signal": "radius"}}},
"marks": [
{
"type": "group",
"name": "categories",
"zindex": 1,
"from": {
"facet": {
"data": "table",
"name": "facet",
"groupby": ["_source.category"]
}
},
"marks": [
{
"type": "line",
"name": "category-line",
"from": {"data": "facet"},
"encode": {
"enter": {
"interpolate": {"value": "linear-closed"},
"x": {
"signal": "scale('radial', datum._source.value) * cos(scale('angular', datum._source.key))"
},
"y": {
"signal": "scale('radial', datum._source.value) * sin(scale('angular', datum._source.key))"
},
"stroke": {"scale": "color", "field": "_source.category"},
"strokeWidth": {"value": 1},
"fill": {"scale": "color", "field": "_source.category"},
"fillOpacity": {"value": 0.3}
}
}
},
{
"type": "text",
"name": "value-text",
"from": {"data": "category-line"},
"encode": {
"enter": {
"x": {"signal": "datum.x"},
"y": {"signal": "datum.y"},
"text": {"signal": "datum.datum._source.value"},
"align": {"value": "center"},
"baseline": {"value": "middle"},
"fill": {"value": "black"}
}
}
}
]
},
{
"type": "rule",
"name": "radial-grid",
"from": {"data": "keys"},
"zindex": 0,
"encode": {
"enter": {
"x": {"value": 0},
"y": {"value": 0},
"x2": {
"signal": "radius * cos(scale('angular', datum['_source.key']))"
},
"y2": {
"signal": "radius * sin(scale('angular', datum['_source.key']))"
},
"stroke": {"value": "lightgray"},
"strokeWidth": {"value": 1}
}
}
},
{
"type": "text",
"name": "key-label",
"from": {"data": "keys"},
"zindex": 1,
"encode": {
"enter": {
"x": {
"signal": "(radius + 5) * cos(scale('angular', datum['_source.key']))"
},
"y": {
"signal": "(radius + 5) * sin(scale('angular', datum['_source.key']))"
},
"text": {"field": "_source\\.key"},
"align": [
{
"test": "abs(scale('angular', datum['_source.key'])) > PI / 2",
"value": "right"
},
{"value": "left"}
],
"baseline": [
{
"test": "scale('angular', datum['_source.key']) > 0",
"value": "top"
},
{
"test": "scale('angular', datum['_source.key']) == 0",
"value": "middle"
},
{"value": "bottom"}
],
"fill": {"value": "black"},
"fontWeight": {"value": "bold"}
}
}
},
{
"type": "line",
"name": "outer-line",
"from": {"data": "radial-grid"},
"encode": {
"enter": {
"interpolate": {"value": "linear-closed"},
"x": {"field": "x2"},
"y": {"field": "y2"},
"stroke": {"value": "lightgray"},
"strokeWidth": {"value": 1}
}
}
}
]
}
The First example use a simple elasticsearch query to get events directly into the visualization, the next example is more dynamic and bring the data of elasticsearch aggregation(Composite Aggregation) with dynamic context
{
"$schema": "https://vega.github.io/schema/vega/v5.json",
"description": "A radar chart example, showing multiple dimensions in a radial layout.",
"width": 400,
"height": 400,
"padding": 40,
"autosize": {"type": "none", "contains": "padding"},
"signals": [{"name": "radius", "update": "width / 2"}],
"data": [
{
"name": "table",
"url": {
"%context%": true,
"%timefield%": "@timestamp",
"index": "radar",
"body": {
"size": 0,
"aggs": {
"buckets": {
"composite": {
"sources": [
{"key": {"terms": {"field": "key"}}},
{"category": {"terms": {"field": "category"}}}
]
},
"aggs": {"sum": {"sum": {"field": "value"}}}
}
}
}
},
"format": {"property": "aggregations.buckets.buckets"}
},
{
"name": "keys",
"source": "table",
"transform": [{"type": "aggregate", "groupby": ["key.key"]}]
}
],
"scales": [
{
"name": "angular",
"type": "point",
"range": {"signal": "[-PI, PI]"},
"padding": 0.5,
"domain": {"data": "table", "field": "key.key"}
},
{
"name": "radial",
"type": "linear",
"range": {"signal": "[0, radius]"},
"zero": true,
"nice": false,
"domain": {"data": "table", "field": "sum.value"},
"domainMin": 0
},
{
"name": "color",
"type": "ordinal",
"domain": {"data": "table", "field": "key.category"},
"range": {"scheme": "category10"}
}
],
"encode": {"enter": {"x": {"signal": "radius"}, "y": {"signal": "radius"}}},
"marks": [
{
"type": "group",
"name": "categories",
"zindex": 1,
"from": {
"facet": {"data": "table", "name": "facet", "groupby": ["key.category"]}
},
"marks": [
{
"type": "line",
"name": "category-line",
"from": {"data": "facet"},
"encode": {
"enter": {
"interpolate": {"value": "linear-closed"},
"x": {
"signal": "scale('radial', datum.sum.value) * cos(scale('angular', datum.key.key))"
},
"y": {
"signal": "scale('radial', datum.sum.value) * sin(scale('angular', datum.key.key))"
},
"stroke": {"scale": "color", "field": "key.category"},
"strokeWidth": {"value": 1},
"fill": {"scale": "color", "field": "key.category"},
"fillOpacity": {"value": 0.3}
}
}
},
{
"type": "text",
"name": "value-text",
"from": {"data": "category-line"},
"encode": {
"enter": {
"x": {"signal": "datum.x"},
"y": {"signal": "datum.y"},
"text": {"signal": "datum.datum.sum.value"},
"align": {"value": "center"},
"baseline": {"value": "middle"},
"fill": {"value": "black"}
}
}
}
]
},
{
"type": "rule",
"name": "radial-grid",
"from": {"data": "keys"},
"zindex": 0,
"encode": {
"enter": {
"x": {"value": 0},
"y": {"value": 0},
"x2": {"signal": "radius * cos(scale('angular', datum['key.key']))"},
"y2": {"signal": "radius * sin(scale('angular', datum['key.key']))"},
"stroke": {"value": "lightgray"},
"strokeWidth": {"value": 1}
}
}
},
{
"type": "text",
"name": "key-label",
"from": {"data": "keys"},
"zindex": 1,
"encode": {
"enter": {
"x": {
"signal": "(radius + 5) * cos(scale('angular', datum['key.key']))"
},
"y": {
"signal": "(radius + 5) * sin(scale('angular', datum['key.key']))"
},
"text": {"field": "key\\.key"},
"align": [
{
"test": "abs(scale('angular', datum['key.key'])) > PI / 2",
"value": "right"
},
{"value": "left"}
],
"baseline": [
{"test": "scale('angular', datum['key.key']) > 0", "value": "top"},
{"test": "scale('angular', datum['key']) == 0", "value": "middle"},
{"value": "bottom"}
],
"fill": {"value": "black"},
"fontWeight": {"value": "bold"}
}
}
},
{
"type": "line",
"name": "outer-line",
"from": {"data": "radial-grid"},
"encode": {
"enter": {
"interpolate": {"value": "linear-closed"},
"x": {"field": "x2"},
"y": {"field": "y2"},
"stroke": {"value": "lightgray"},
"strokeWidth": {"value": 1}
}
}
}
]
}